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ABSTRACT

The nonlinear dynamic systems o f a one-pitch-joint link system and a two-pitch-joint link 

system are derived based on the jo in t angles. In particular, the torques required at the 

joints to produce the required jo in t motions are determined. The reverse problem of 

determining the jo in t motions based on assigned torques is fully explored. Analytical 

solutions are shown to be impossible, so numerical solutions are relied on.

It is shown that the motion, oscillatory and rotational, o f both one and two jo int systems 

depend on the initial conditions. For the one-pitch-joint link system, the oscillatory 

motion is due to gravity. For the two-pitch-joint link system, the oscillatory motion can 

be caused by gravity and/or the internal dynamics; the equations are so nonlinear that any 

attempt at linearizing is doomed to failure and approximating the system eigenvalues is 

not feasible.

The dynamic characteristics o f the forced motion o f  both systems are explored, and yield 

some interesting responses that appear counter intuitive, but are verifiable.

iii
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Chapter 1 

Introduction

1.1 Introduction

Robots have been utilized in many fields such as ocean and space exploration, welfare 

and medical and industrial applications. Common commercial and training robots are 

classified into: revolute robots, cylindrical robots, Cartesian robots, polar robots, 

SCARA robots and unclassified robots. For the study of robotics, integration of 

existing technologies is crucial, including mechanical and electrical engineering, 

computer science and human science and engineering [5].

It is very important to know the dynamic characteristics o f robot manipulators in 

motion control problems, but in general it is difficult to analyze the dynamics of a 

robot manipulator theoretically because of its nonlinear characteristics. For example, 

if a two-link system has a large amplitude motion, we cannot rely on linearization, 

and the nonlinear characteristics of the system become stronger [11,12],

The analysis of robot dynamics is very complicated. It includes two main topics. One 

is trajectory planning whose objective is to make the robot end effectors follow a 

specified trajectory and control the velocity and acceleration. If the robot has N joints, 

then the robot controller must make each joint (z' = l,..JV) follow specifiedf?(/),

di (t),  6i (t) (if joint i is revolute). This problem has closed form solution. Another
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problem is torque space task planning, the mapping from torque space to joint space 

or position space [13]. It is difficult to design in torque space, since we have no closed 

form solution for determining position space or joint space from torque space. To plan 

a trajectory using torque space is an open, iterative procedure, since equations that 

describe robot dynamics are a set of coupled, second-order, nonlinear Ordinary 

Differential Equations (ODEs) that have no analytical solution [4,6]. For example, if 

we wish to minimize the execution time for a robot in moving between two position 

space points, the ideal method would be to determine the joint most likely to be 

torque-limited and drive that joint with maximum actuator acceleration, adjusting the 

torques at the other joints to follow the prescribed path. This is not possible in closed 

form. Instead, we can monitor the torques at specific points along the path and change 

the path or execution time so that the resulting torques are feasible; this itself is an 

iterative procedure. The only known method to solve this kind o f problem is 

numerical approximation, using integration techniques such as Euler’s method or 

Runge-Kutta methods. In the following chapters, with tools like Matlab, we will 

concentrate on the performance of the vertical one-pitch-joint link system and two- 

pitch-joint link system, and not on the underlying numerical methods and coding 

needed to perform the actual computations. In this thesis, commercial numerical 

solvers i.e. the Matlab’s ODE routines, such as ode23 will be used to get numerical 

solution to task planning a robot in torque space under certain initial conditions [3,10].

1.2 Background

Before the time when programmable computers didn't exist, it was impossible to solve 

a differential equation like the equation of motion of a pendulum driven by a periodic 

force. That is, the solution couldn't be expressed in terms of well-known functions
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like in the case of the linearized equation of motion. Nonlinear equations of motion 

can be solved only in rare cases analytically. For that reason, physicists tried to build 

their theories on linear differential equations because they are easier to solve. And 

indeed, the most successful theories (like electrodynamics and quantum mechanics) 

are based on linear differential equations. Other even older theories dealing with 

physical phenomenon closer to everyday experience, like fluid dynamics, were less 

successful because their dynamics is nonlinear. However, the advent of computers in 

the last decades made it possible to tackle unsolvable nonlinear problems. This 

possibility led to a completely different view onto dynamical systems and in 

association with it to a new language about dynamical systems. Nonlinear dynamics 

became famous because of the possibility of deterministic chaos, i.e., irregular 

solutions even though the equation of motion is deterministic. This behavior, that is 

impossible in linear dynamics, was counterintuitive and therefore attracts much 

attention not only by mathematicians and physicists, but also by other scientists 

interested in scientific topics. The subject if dynamic analysis of robot is has appeared 

very complicated because of the nonlinearity of the motion equations. In the thesis, 

we use the point-plane method of analysis which is shown to provide simpler 

kinematic analysis than standard formulations involving the Denavit-Hartenberg 

notation [4].

1.3 Thesis Objective

In this thesis, the nonlinear dynamic characteristics of both free motion and forced 

motion o f both one-pitch-joint link system and two-pitch-joint link system are 

explored, and yield some interesting responses that appear counter intuitive, but are 

verifiable. The one-pitch-joint link system looks like an upward inverted planar
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pendulum and the two-pitch-joint link system looks like a double upward inverted 

pendulum. Both pendulums have been fully studied for many years as an archetypal 

system to illustrate many of the basic features of dynamic. For example, as for the 

planar pendulum, when it is periodically forced, the pendulum can undergo an array 

of changes in state, including chaotic behavior. Its importance has equally been 

demonstrated by many problems of practical interest that result in mathematical 

models which incorporate aspects of a pendulum-like equation in one form or another; 

for instance, the heave excited roll response of a ship in waves. More recently the 

system has attracted the attention of many nonlinear researchers to explore its full 

nonlinear response and even the possible application o f controlling chaos [19]. 

Although the two systems, one-pitch-joint link system and two-pitch-joint link system, 

described in this thesis are similar to the planar pendulum and double planar 

pendulum respectively, they are a little different with respect to the dynamic 

characteristics which will be discussed in the following chapters.

In this thesis, we will model two non-linear dynamical systems, a one-pitch-joint link 

system and a two-pitch-joint link system, and derive the motion equations of both 

systems, then simulate both of the systems numerically using ODE routine with 

Matlab and discuss the dynamic characteristics o f both systems [8,9].

In chapter 2, we will model a one-pitch-joint link system and drive the motion 

equations o f this system. The equations can be classified into linear and non-linear 

according to the orientation which is chosen. Characteristics of the free motion and 

dynamics o f the forced motion of this system are discussed. The free motion can be 

classified into two types. One is rotation and the other is oscillation. Furthermore, it 

can be shown that the initial conditions determine which motion will appear. Some 

dynamic characteristics are also shown. The link o f this system will keep rotating or
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oscillating according to the initial conditions. In addition, an example of appropriate 

control sequence of the system is obtained based on the dynamics of forced motion 

analysis.

In chapter 3, we modeled the two-pitch-joint link system and derived the motion 

equations of this system. The motion equations are different when different 

orientations are chosen. The characteristics of the free motion mode o f this system are 

discussed. In addition, we discussed the dynamics of the forced motion of this system 

for two orientations which will be specified in chapter 3. The same as chapter 2, we 

also give an example to obtain an appropriate control sequence of the system under 

one o f two orientations.
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Chapter 2 

One-Pitch-Joint System

2.1 M odel o f a One-Pitch-Joint System

First, consider this simplest case, a vertical one-pitch-joint link system in plane p  as 

shown in Figure 2.1. Figure 2.1 (a) is the model of one-pitch-joint link system while 

Figure 2.1 (b) is the corresponding physical example. In this case, we use the vector

orthogonal to the plane to define p  as p , and this vector is directed into the

paper. From Figure 2.1, we can see that u2l is the vector from the origin to the end of

the link, u2i x p  is perpendicular to m21 . Further, we know «2lx p x  p  = - u 2l since un is

orthogonal to p  . ux is the origin, u2 is the end point of the link. 6 is the angular

displacement of the joint. / is the length of the link. From “Applied Robotic 

Analysis” (1991), the acceleration at the end of the link can be expressed as [4]:
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H , ! 
t  \  • 1

^ / \ V < 9 2 « 2 i * P

/  \  I 
•• *  \  !
d u 2 l x p  \  6  \

\  I

/A
®  p  /

(a)

m

(b)
Figure 2.1 (a) Mathematical model (b) Physical model of one-pitch-joint link system.

h2 = 9  w21 x p - 6  u21 (2.1)

The directions of these accelerations are shown in Figure 2.1.
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The acceleration of a particle due to gravity is give by g  =

0

0
9.81

m /sec2. Including

gravity, the total acceleration of the point mass m at u2 is u2 = 0 m21 x p  - 6 2 u2l -  g . 

Assume the rod is rigid and its mass is negligible. From Newton’s second law, the 

force on point mass m is

f  = m u2

= m{9 w21 x p - 6  u2l -  g )

= m(6 m21 x p - 0 u 2l) -  mg

(2 .2)

So, the torque at point w, is produced by the component of the force orthogonal to

u.

T = f  • «21 x P 

= {m(9 u2l x p - d u 2x)~  mg }*«21 *P (2.3)

= m Ol2 -  mg • «21 X P

where m,l are constants.

The geometric simplification of the gravity is based on the plane of motion p , and 

consideration o f these simplifications follows in the next equation.

2.2 Nonlinear State Space Equations

Suppose a system is driven by choosing the torques at the joints. In theory, the 

positions of the joints as a function of time cannot be obtained in closed form, and
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instead an approximate solution must be obtained involving numerical integration -  

the replacement of the differential equations by difference equations via the 

application of a numerical integration formula. This contrasts to the reverse problem, 

i.e. given the joints positions as a function of time we can obtain the torques necessary 

to drive the joints in closed form [7, 14]. The problem is shown in Figure 2.2.

The torques in a system of « re volute joints ©,,/  = 1,2,..., wis described by n second 

order differential equations. These are transformed to a set of 2n first order equations

under the substitutions z x = ©t, z2 =©i  ,z3 = 0 2,z4 = @2 ,...,z2„_, = ® „ z2n =&„.

POSITION SPACE
A

FKS IKS

7

JOINT SPACE
A

closed
V

open

TORQUE SPACE

Figure 2.2 Relationships between position space, joint space and torque space. 

When an orientation is chosen for the chain of links and joints, there may be some 

simplifications made to the terms involving gravity. In Figure 2.2, FKS, IKS denote 

Forward Kinematic Solutions and Inverse Kinematic Solutions respectively; closed 

and open denote closed form solutions and open form solutions respectively.
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As for the one-pitch-joint link system, for example, suppose p  = in equation (2.3),

then since g  • u2lx p  = 0, the gravity term becomes zero and equation (2.3) becomes

t  = m Ol2

Next, suppose p  =

(2.4)

, equation (2.3) becomes

t  = mOl2 - m g ' «21 x P

'O ' I sin 9 'O'

m 9 l 2 - m 0 • 0 X 1

_g_ I cos 9 0
(2.5)

= m 9 l 2 - m g l s \n 9

So, this system is linear when p  = ; and it is a nonlinear when p  = . The

objective here is to find the dynamic characteristics of this system. That is, the

relationships o f joint angular displacement (0) versus time, joint angular velocity ( 9 )

versus time and joint angular acceleration ( 9 )  versus time, when the torque (t) is 

given. As for equation (2.4), that means we should try to find the analytical solution 

of this linear second-order differential equation. Obviously, it is very easy to find the

r(0analytical solution 9 =
ml2

and there is no natural response;

9 = 3 T ( Jr ( ')‘* + a) and 9 = — ( ^z{t)dtdt  + at + b) where a and b are determined 

by the initial conditions. As for equation (2.5), through observation we find that it is
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nonlinear in 0 due to the term sin 9 and cannot be solved in terms of elementary 

functions. That is, it is impractical to find the analytical solution of this equation. In 

general, when an analytical solution is not possible for a nonlinear system, a 

numerical approximation to the solution of the nonlinear differential equation might 

be found by using appropriate simulation methods. We will focus on the numerical

solution to the system in the case o fp  = and its dynamic characteristics in this

chapter.

Numerical solution techniques for ordinary differential equations are divided into 

methods that solve initial value problems (IVP), as applied here or methods that solve 

boundary value problems (BVP). The techniques applicable to initial value problems 

(IVP) are designed to solve the following n-dimensional nonlinear first order system 

of ordinary differential equations over the specified time interval a  <t < ft . 

d
dt

?. = a, t) (2 .6)

Equation (2.6) is called standard state form [1]. So if we want to get the numerical 

solution of this ordinary differential equation group, we need put it into standard state 

form. To put this equation into standard state form, we make the following 

substitution:

z, = 9 z 2 = 0  = z l

Write the final state space equations for the one-pitch joint 10 | as:

(2.7)

z =

r r

Z1 e

- Z 2 _
e T S  ■ — t- + — sinz

ml2 /

(2 .8)

This expression is now the desired form given in equation (2.6).
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So far, we can simulate this system in Matlab using its ode23 routine. This routine 

applies an adaptive step control algorithm by obtaining error estimates using two 

Runge-Kutta (RK) predictions of different order [1], This routine is quite accurate for 

many complicated cases like this one. We will discuss the dynamic characteristics of 

this system in following sections. Although the approximation is quite accurate, it is 

not true solution. There is a need to verify the approximate results, and this can be 

done by measuring the energy in the system. It will be noted in the following sections.

2.3 Characteristics in Free Motion

The free motion of this system can be classified into two types: rotation and 

oscillation. Furthermore, we can also show that the initial condition, that is, initial 

joint angular displacement and initial joint angular velocity, determines which motion 

mode will appear. In this section, four cases will be discussed in the model of free

motion o f one-pitch-joint link system in case o fp - . In addition, assume point

massesm{ = 1 kg,  link lengths^ = 1 m .

Case 1: The initial kinetic energy of the system and initial joint angular displacement

are zeros in the free motion. Under this condition, z 0 = 0  = the one-pitch-joint

link system will remain at rest. It is an ideal status which can not exist in practice.

Case 2: The initial kinetic energy of this system is a constant (not zero) and the initial 

joint angular displacement is zero.

In this case, let the initial angular velocity 6 =0.1, 1, 5 radian/sec while initial joint 

angular displacement 0=0, respectively and simulate this system. Figure 2.3 through
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Figure 2.5 are the plots that represent the relationships of joint angular displacement 

versus time, joint angular velocity versus time and joint angular acceleration versus 

time o f one-pitch-joint link for some variations of initial conditions respectively.

One-pitch-joint link system

de/dt(0)=0.1
d0/dt(O)=1
de/dt(0)=5

TJ

CD 15

0.5 I 2.5 
Time (second)

3.5 4.5

Figure 2.3 Angular displacement versus time for free motion at different initial 
conditions:z 0 = [0 0 . l } , z 0 =[0 1]', z 0 =[0 5]'.
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One-pitch-joint link system
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Figure 2.4 Angular velocities versus time for free motion at different initial 
conditions: z0 = [0 0 . l ) , z 0 =[0 1]', = [0 5]'.

One-pitch-joint link system
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Figure 2.5 Angular accelerations versus time for free motion at different initial 
conditions:z 0 = [0 O.l], z 0 = [0 1]', z0 =[0 5]'.
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From Figure 2.3, we can see that the curves look like wavy lines and they tend to be 

straight lines while the initial joint angular velocity increases. Also, joint angular 

displacement increases continuously along with the time. The greater the initial joint 

angular velocity is, the bigger the value of the joint angular displacement that the link 

rotates is within a fixed time interval. So the solution curves in Figure 2.3 are what we 

expect. From Figure 2.4, the solution curves look like sine waves and have different 

periods according to different initial joint angular velocities. It is very easy to 

understand this phenomenon according to the conservation of energy law. In this case, 

we can treat this one-pitch-joint link system as an undamped, undriven system [15,18]. 

So the mechanical energy (the sum of the kinetic energy and the potential energy) of 

this system keeps unchanged. That means the kinetic energy and potential energy of 

this system will convert periodically while the mechanical energy keeps unchanged. 

When the link rotates (2n + \ ) n , n = 0,1,2..., that is, the point mass rotates from top to 

the bottom, all of the potential energy of this system has converted to kinetic energy. 

So the kinetic energy becomes the maximum value. That is, the velocity becomes the

dO
maximum value. For example, as for the top solution curve ( —  (0) = 5) in Figure 2.4,

dt

we can see that when the angular velocity of the link become the maximum value, the 

corresponding joint angular displacement in Figure 2.3 is (2n + \)n , n  = 0,1,2... 

respectively. It verifies that the simulation is correct. We can also get the periods of 

the curves shown on the plots through analytical solution. Many studies on the 

analytical solutions have been carried on. It will not be repeated here. As for the joint

angular acceleration, it is calculated from the formula 9 = g  sin 0  (since r  = 0). The 

plot can be seen in Figure 2.5.
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Therefore, we can conclude: when the initial joint angular displacement is zero while 

initial angular velocity is a constant (not zero), the link of the system will rotate 

continuously.

Case 3: The initial kinetic energy is zero and the initial joint angular displacement is a 

constant (not zero).

In this case, let the initial joint angular displacement 0 = 0.1, 1, 5 while initial

angular velocity 0 = 0  and simulate this system. Figure 2.6 through Figure 2.8 are the 

plots that represent the relationships of joint angular displacement versus time, joint 

angular velocity versus time and joint angular acceleration versus time of one-pitch- 

joint link for some variations of initial conditions respectively.

One-pitch-joint link system

—  0(0)=0.1 
—  0 (0 )= 1 
— 0(O)=5

® 3

0.5 I 2.5 
Time (second)

3.5 4.5

Figure 2.6 Angular displacements versus time for free motion at different initial 
conditions: z 0 =[0.1 0), z 0 =[1 0]', z 0 =[5 0]'.
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One-pitch-joint link system

■o
r

0(O)=O.1 
0 (0 )= 1 
0(O)=5

> 2.5
Time (second)

3.5 4.50.5

Figure 2.7 Angular velocities versus time for free motion at different initial 
conditions:z0 =[0.1 O], z 0 = [1 0]', z0 =[5 0]'.

One-pitch-joint link system
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Figure 2.8 Angular accelerations versus time for free motion at different initial 
conditions:z0 = [0.1 0 ] , z 0 = [l 0]', z0 = [5 0]'.
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From Figure 2.6, we can see that the solution curves are sine wave alike and have 

different period according to different initial joint angular displacement. It means that 

the link of one-pitch-joint system will oscillate between two points. In addition, we 

can also explain this phenomenon according to the conservation o f energy law. It will 

not be discussed in detail here since it is similar to case 2. As for the angular velocity 

and angular acceleration, it is indicated in Figure 2.7 and Figure 2.8.

So we can conclude: when the initial angular velocity is zero while the initial joint 

angular displacement is a constant (not zero), the link of this system will oscillate 

between two specified points which can be specified.

One thing should be noted here. When the initial angular displacement is nearby n, 

that is, 0(0) is withinl80° ± 5°, this one-pitch-joint link can be seen as a harmonic

oscillator. We can calculate its period of oscillation through T = 2n — where / is the
U

length of the link. It indicates that the period of the harmonic oscillator is only 

dependent on the length of the link. Figure 2.9 is the example of the plot which 

represents the relationship o f the angular displacement versus time o f a harmonic 

oscillator with the length of the link is 1=1 m . It can be seen from Figure 2.9 that the 

period is about 2 seconds although the initial angular displacements are different.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

19

One-pitch-joint link system
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Figure 2.9 Angular displacement versus time of a pendulum ( / = \ m ).

This one-pitch-joint link system is properly modeled by a harmonic oscillator only for 

small angular displacement range, that is, 6(0) is within 180° ± 5°. It is well known

increasing amplitude of oscillation. Starting near the upside-down position, you will 

find that the period becomes much larger than for small-angle oscillations. In fact, the 

period approaches infinity in the limit 0max ► 0°. In the virtual lab (and in reality too) 

you will never reach this limit. This system can be treated as an undamped and 

undriven pendulum. Although the motion equation is nonlinear, we can calculate its 

period as a function o f the amplitude #max. The formula is given as:

from the experiment done by researchers that the period of oscillation increases with

4 6
T = — £ ( - = - ) ,  

co0 2
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Whereg  is the gravity constant, /is  the length of the link. Use this formula, we can 

verify the periods o f the solution curves. For example, we calculated the periods of 

the solution curves o f Figure 2.6 are 5.8s, 2.74s, 2.55s which coincide with the plots. 

Therefore, the simulation results are verified.

Case 4: The initial kinetic energy and the initial joint angular displacement are 

constants (but not zeros).

In this case, the link of this system may rotate continuously (tumbling curves for joint 

angle displacement) or oscillate (periodic curves for joint angle displacement) 

between tow specified points according to the values of initial kinetic energy and 

initial joint angular displacement. The curves that are hardest to find are those that 

separate the periodic curves from the tumbling curves. This kind of curve is called 

separatrix. Figure 2.10 shows the solution curves o f the one-pitch-joint link system at 

the initial conditions: z 0 = [1 1] (periodic back-and-forth motion), z 0 = [1 5]

(tumbling motion over the pivot) and z0 =[1 V9.81 ] (separatrix motion) [2], The

number V9.81 is exact but computer arithmetic is not, so we had to start a little below

V9.81 to even come close to the separatrix solution shown.
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One-pitch-joint link system
30

  d0/dt(O)=sqrt(9.81)
—  d0/dt(O)=1 
  d0/dt(O)=5

0.5 > 2.5 :
Time (second)

3.5 4.5

Figure 2.10 Periodic, separatrix and tumbling solution curves at initial condition:

Ko ~ [1 1] 5 = [1 v/9.81] respectively.

It is easy to explain these three solution curves according to the conservation of 

energy law. From Figure 2.10, the initial joint angular displacement is fixed as 1 

radian from the vertical direction. When the initial joint angular velocity equals to 1 

radian/second, the link will oscillate between two specified points because the link 

has no enough kinetic energy to overcome the gravity o f the point mass to rotate 

continuously. The critical joint angular velocity is V9.81 .When the initial joint 

angular velocity is greater than the critical velocity, for example, 5, the link tumble 

over the joint because it has enough kinetic energy to overcome the gravity to rotate 

continuously.

Up to now, the discussion of solution curves is based on an examination of the plots 

in Figure 2.3 through Figure 2.10 which are generated by a numerical solver.
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Fortunately, these properties can be explained according the conservation o f energy 

law and the simulation results can be verified through empirical formula.

2.4 Dynamics o f Forced Motion

In this section, we will discuss the dynamics of forced motion and can easily obtain an 

appropriate control sequence so as to move the system along the specified path. We 

simulated this system under different initial conditions and find that the link of this 

system keeps rotating or oscillating according to the initial conditions when the 

actuated torque is constant at the joint. We will consider two cases.

Case 1: the link of this system keeps rotating.

Assume point massm, =1 kg,  link length / = \m and simulate this system under the

initial condition: z 0 = 0 , t = 1 . Figure 2.11 through Figure 2.13 the plots that

represent relationships of joint angular displacement versus time, angular velocity 

versus time and angular acceleration versus time under this initial condition.
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One-pitch-joint link system
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Figure 2.11 Angular displacement versus time at initial condition: z 0 = 0,r
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Figure 2.12 Angular velocity versus time at initial condition: z 0 = 0,r = 1
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One-pitch-joint link system
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Figure 2.13 Angular acceleration versus time at initial condition: z 0 = 0,r = 1

From Figure 2.11, we can see that the link of this system keeps rotating. From Figure 

2.12 and Figure 2.13, we can see that the angular velocity o f the system keeps 

increasing and the angular acceleration oscillates within the specified amplitude when 

the actuated torque is constant over the time interval. It is very easy to understand 

according the physical characteristics of this system and will not be explained in 

detail.

Case 2: the link of this system keeps oscillating.

Assume point mass/w, = 1 kg,  link length / = 1 m again and simulate this system under 

the initial condition: z 0 = 0} ,r = 1. Figure 2.14 through Figure 2.16 are the plots

that represent relationships of joint angular displacement versus time, angular velocity 

versus time and angular acceleration versus time under this initial condition.
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One-pitch-joint link system
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Figure 2.14 Angular displacement versus time at initial condition: z 0 = \n o}, x -  1
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Figure 2.15 Angular velocity versus time at initial condition: z 0 = [k  0} ,r = 1
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One-pitch-joint link system
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Figure 2.16 Angular acceleration versus time at initial condition: z 0 = \jt o ) , r  = 1 

From Figure 2.14, we can see that the link of this system keeps oscillating between 

two specified points. It is easy to understand. The actuated torque is not big enough to 

overcome the gravity force to keep the link tumbling over the pivot. So the link of this 

system keeps oscillating.

To obtain an appropriate control sequence, we keep the initial condition in case 1 

unchanged and let the actuated torque equal to -1. Simulate this system and see what 

will happen. Figure 2.17 through Figure 2.19 are the plots that represent relationships 

of joint angular displacement versus time, angular velocity versus time and angular 

acceleration versus time under the initial condition: z 0 = 0,r = -1 .
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Figure 2.17 Angular displacement versus time at initial condition: z 0 = Of =
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Figure 2.18 Angular velocity versus time at initial condition: z 0 = 0,r = -1
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One-pitch-joint link system
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Figure 2.19 Angular acceleration versus time at initial condition: z 0 = 0,r = -1

It can be seen that Figure 2.17 through Figure 2.19 are the inverse cases of Figure 

2.11 through Figure 2.13 respectively. So we can assume that the motion of this 

system can be controlled along a specified path. The example of control action and 

the motion of the system as a function o f time are shown in Figure 2.20. From Figure 

2.20, we can see that the negative torque must be continued slightly longer to move 

the point mass (the endpoint of the link) to the specified point with zero velocity at 

this endpoint. It shows that the objective of control was successfully achieved.
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One-pitch-joint link system
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Figure 2.20 The motion of the system and the control action.

Figure 2.20 is only a simple example of control action. However, from this example, 

we can predict: as long as the actuated torque and switched point are given, we can 

take the motion trajectory schematically by the similar manner in this example. Again, 

we recognize the importance of the dynamics characteristics o f a system, including 

that o f free motion and forced motion. It is the fundamental of the motion control 

action.

2.5 Conclusion

In this chapter, we modeled a one-pitch-joint link system and drove the motion 

equation o f this system. The equations can be classified into linear and non-linear 

according to the orientation which is chosen. Characteristics of the free motion and 

dynamics of the forced motion of this system are discussed. The free motion can be 

classified into two types. One is rotation and the other is oscillation. Furthermore, is
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can be shown that the initial conditions determine which motion will appear. Some 

dynamic characteristics are also shown. The link of this system will keep rotating or 

oscillating according to the initial conditions. In addition, an example of appropriate 

control sequence of the system is obtained based on the dynamics of forced motion 

analysis. Meanwhile, we know that as long as the actuated torque and switched points 

are given, we can take the motion trajectory schematically by the manner in the 

control example.
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Chapter 3 

Two-Pitch-Joint System

3.1 M odel o f a Two-Pitch-Joint System

As mentioned in chapter 1, it is generally difficult to analyze the dynamics of a robot 

manipulator analytically because of its non-linear characteristics. For example, if a 

two-pitch-joint link system has a large amplitude motion, we can not rely on 

linearization, and the non-linear characteristics of the system become stronger. For 

this reason, it seems that there are few studies on the theoretical analysis of dynamics 

of a two-pitch-joint link system. However, it is known that first integrals of non-linear 

differential equations give qualitative information about the behavior of the 

underlying dynamical systems, and there are some studies on finding the first 

integrals o f non-linear dynamical systems and their application. For example, 

Kowalski and Steeb discussed the problem of finding symmetries and first integrals 

for non-linear dynamical systems using the Hilbert space approach [17]. Sarlet and 

others discussed the approach for finding the first integrals of some non-linear 

dynamical equations. Moreover, the motion analysis of a cart pendulum using first 

integral has been studied.

Kee-Ho Yu, Takayuki Takahashi and Hikaru Inooka presented the non-linear motion 

analysis o f a horizontal two-pitch-joint link system by focusing on the constant of the
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first integrals. In their paper, they derived the equations of motion and showed that the 

first integrals can be obtained for the system. The procedure o f the derivation is 

described as following:

The two-pitch-joint system which has planar motion without friction and damping 

effect is modeled in Figure 3.1, where #,is the angle of the first pitch joint, 02 is the 

angle of the second pitch joint related to the first link, m{{m2) is the mass o f the link 1 

(link 2), /, (/2) is the length of the link 1 (link 2), and ( r2) is the actuated torque at 

the first pitch joint (second pitch joint) [16],

-  Ou

6 1 m31 x p  0 2  u32 x p

P ©

Figure 3.1 Model of a two-pitch-joint link system 

The kinetic energy o f the system, Ek, can be expressed as

1, 1 ci2,dd, dO 2 . 2  , , dOx,d0. d02. - .
E k + m 2 ) l x (—7 7 ) + ~ m 2 { l 2 ( — j -  +  — - f - )  + 2 1 J 2 - ± ( — ±  +  — ± - ) c o s 0 2 }

2 at 2 at at at at at
(3.1a)

The equations of motion o f the system can be written as follows using Lagragians:

(l + /d,2 + 2X q,os62)6 x + {\ + A.cosQ2)G2- A 6 2(2Gi + Q2)sm 62 -  a  (3.2a)
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(1 + A cos ) 6>j + <92 + A <9,2 sin -{3  

where

K  =
m. + m, „ /,
—  M  =  — ,

I

a  =  — — ,/3 =  — 2—

W2g/2

where g  is the acceleration of gravity.

Equation (3.2a) and (3.2b) can also be written as:

r, = — {[mj/j2 + m2(lx + l2 + 2lxl2 cosd2)\9x + m2l2(lx cos&2 + l2)02 
l2

-  m2lxl2 (2 ̂  + #2) sin #2 }

(3.2b)

(3.2c)

t 2 = m2g{(lx cos#2 + /2) + 12 02 + lx 0X sin 02}

In their paper, they chose the orientation as p

(3.2d)

so there should be no gravity

terms in the equation. But in their equation, the gravity terms appear. This is an 

obvious error in the motion equation. In the next section, we will drive the motion 

equations and compare the difference.

3.2 Nonlinear State Space Equations

We do not exactly know how they derived the motion equations o f the two-pitch-joint 

link system using Lagrangians since it is not discussed specifically in their paper. But 

we doubt the correctness of the motion equations. So there is a need to check their 

motion equations. However, we will derive our motion equations step by step first and 

then compare them with theirs.
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From “Applied Robotic Analysis” (1991), the accelerations o f end points of the link 1 

(point «2) and link 2 (point u 3 ) can be expressed as:

«2 = #1 «21 x P ~ Q\ **2

**3 — 1̂ **31 p  + 02 W32 X P 1̂ **31 ^ 2  **32 ^ ̂ 1 ^2 **

(3.1)

•32 (3.2)

According to Newton’s second law, the forces on the point-mass ml at point w2 and 

m 2 at point «3 including gravity are:

/ml = *»1 **2 M\g (3.3)

f r n 2 = m 2 U3 ~ m2g (3.4)

The torque at w, is produced by the component of the force orthogonal to m31 . In this 

paper, we use z t to represent torques.

*j = /m l# **2l X/* + /m2***31XP

) • (**31 X P)

'O' V
mi (**2 g 0 ) * { u 2lx p )  + m2{u3- g 0

1 1

m x{ 9 x u 2 i x  p -  9 l  u 2 l - g } • (**21 x P)

+ m 2 {Qx u 3l x p  4 - Q2 u 32 x p  0 l u 3l 0 2 u 32 2 0 { 0 2 u 32 g } • (**3 . X P)

(3.5)

Also, as noted in Chapter 2, there may be some simplifications made to the terms 

involving gravity when an orientation is chosen for the chain of links and joints. For
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example, suppose p  = the gravity terms drop out in equation (3.5). Neglect detail

calculation, equation (3.5) becomes

r, = ml dx If

+ m2 {Qx I2 + 02112 cos/? -  //2 sin /?Of -  2112 sin ft 0XO2}
(3.6)

/ is the distance between point «, and point m3 ; /, is the distance between point m, 

and point u2 (the length of rigid link 1); l2 is the distance between point u2 and point 

«3 (the length o f rigid link 2); ft is the angle between / and l2. According to the law 

of sines and law o f cosines, we can get

/ = |«31| = -y /z^ t-T ^ + ^ /^ co s^  (3.7)

Therefore,

I2 = l f  + /22 + 2 /1/2cos02 (3.8)

According to law of sines,

/ /
sin/? s in (7r-02) sin#2

sin fi  =
/j sin 02 

/

(3.9)

(3.10)

From equation (3.10),

. 2 If sin2 62 
sin p  -

i 2

cosf3 = 1 - s in 2 p

Putting equation (3.11) into equation (3.12) and simplifying it gives,

(3.11)

(3.12)

cos =  = y V ( ' l “ s » 2 + ' i ) 2

(3.13)
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So the actuated torque at u{ is

r, = [mxlf  + m2(if + l f  + 2/,/2 cos02)]0X + m2l2(/, cosd2 +l2) 02 

-  m2lxl2(2#, + #2) sin02 02
(3.14)

We will get the actuated torque at u2 ( r 2) using the same method:

T 2 =  f n . 2  *  « 3 1  >< P  

~0~

= m2(u3-  g  0 
1

) * ( « 3 1  > < P )

= m2{6xun x p  + 62 un x p - 6 x u3X- 0 2 u32 - 2 6 x 02u32- g

Putting equation (3.13) into equation (3.15) gives,

}  *  ( « 3 2  X  P )

(3.15)

r 2 = m2{l2(lx cos#2 +l2)dx + ll  d2 + lxl2 df  sin02} (3.16)

Equations (3.14) and (3.16) constitute a nonlinear second-order differential equation

group in the case of p  =

Next, suppose p  = , neglect detail calculation, equation (3.5) becomes the final

form:

r, =[mxlx +m2(lx +l2 +2lxl2cos62)]dx + m2l2(lxcos62 +l2)62

- m2lxl2(26x + d2) s m d 2 d2- m xglx sin#, -  m2g[lx sin#, +l2 sin(#, + #2)]
(3.17)

Using the same method, neglect detail calculation, equation (3.15) becomes the final 

form:
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r 2 = m2{l2(/j cosd2 +l2)dx +12 d2 + l j 2 6X sind2 - gl2 sin(^ + 02)} (3.18)

Equations (3.17) and (3.18) constitute a nonlinear second-order differential equation

group in the case of p  =

As noted before in this section, we will compare the motion equations of Kee-Ho 

Yu’s and that of ours. In Kee-Ho Yu’s paper, the horizontal orientation is chosen for

this system. That is, p  = is chosen. So we will only compare equations (3.2c) and

(3.2d) with equations (3.14) and (3.16) respectively. From equation (3.2c) and 

equation (3.14), we can see that right sides of both equations are the same except that

the first term o f the right side of equation (3.2c) is— while the first term of the right
h

side of equation (3.14) is “ 1”. From equation (3.2d) and equation (3.16), we can see 

the only difference is that the first term o f right side o f equation (3.2d) is m2g  while

the first term of the right side of equation (3.16) is m2l2. Since p  = is chosen for

this system, the gravity terms drop out. But in Kee-Ho Yu’s equations, there are terms 

involving gravity. That proves that their equations are not correct.

In these two equation groups, r, and r 2 are input variables, Gx, 02 are output variables, 

other parameters are constants. The objective for us is to find the dynamic 

characteristics of this two-pitch-joint link system, that is, relationship between the 

torque space and the joint space. That means we should try to find the analytical 

solution of these two nonlinear second-order differential equation groups. Also, as
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discussed in Chapter 2, through observation we find that it is impractical to find the 

analytical solutions o f these two equation groups. The only method to solve this 

problem is numerical solution. As for this system, it is a kind o f initial value problems. 

Be the same as Chapter 2, the techniques applicable to initial value problems are 

designed to solve the following n-dimensional nonlinear first order system of ordinary 

differential equations over the specified time interval a  <t < /3 .

^ - z  = f { z ,u , t )  (3.19)
at —

Equation (3.19) is called standard state form. So if we want to get the numerical 

solution of this ordinary differential equation group, we need put it into standard state 

form.

First, consider equations (3.14) and (3.16). That is, consider the case o fp  = . To

put them into standard state form, we should first manipulate the equations 

algebraically to only have a single second derivative term in each equation. From 

equation (3.16), we have

102  -----— [ t 2 - m 2l2(lx cos02 + l2)0x- m 2lxl2 0X sin6>2] (3.20)
m J n2 2

and putting this into equation (3.14) gives,

lxl2(mx + m 2 sin2 02)0X = l2xx - ( / ,  cos02 +l2)r2 +m2lxl2(lx cos02 + l2)0x sin#2

+ m2lxll  (2 0X + 02) sin 02 02
(3.21)

From equation (3.16),

g _  r 2 nt2l2 02 m2lxl2 0X sin 02 ^  ^
1 m2l2{lxcos02 +l2)
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putting this into equation (3.14) gives,

l \ l \m2(mx + m2 sin2 02)02 = - m 2l2(lx cos02 + 12)t x +{mxlx + m2lx +m2l2 +2m2lxl2 cos02)

(t2 -  m2lxl2 0f  sin 02) -  m\lxll (/, cos02 +l2)

(2 0X + 02) sin 02 02
(3.23)

Finally, dividing by the lead coefficient of the equations (3.21) and (3.23) gives,

■ 1  2 
0X — 2 ; 2~zTt{^2 î i cos02 "*"̂ 2 ) ^ 2  tn2l j 2(.l\ cost?2 +^2 ) ^ 1  sin/, 12 (mx + m2 sin 02)

+ m2lxl2 (2 0X + 02) sin 02 02}
(3.24)

02 —  - ; 2 n  \ j 2 i 2  COS02 + 2̂ )̂ "l +  m2l\ + ^ 2^2
(wij + w2 sin 02)lxl2 

2m2lxl2 cos#2)(r2 -  m2/j/2 0,2 sin 02) ~  m l l xl2 (lx cos02 + l2)

(20x + 02)s\n02 02}
(3.25)

'C
Next, consider equations (3.17) and (3.18). That is, consider the case o fp . To

put them into standard state form, we should first manipulate the equations

algebraically to only have a single second derivative term in each equation. From

equation (3.18), we have

1 •,
02 =  - [ r 2 -  m2l2(lx cos#2 sin<?2 + m2gl2sin(0x + # 2)] (3.26)

m2l2

and putting this into equation (3.17) gives

l f l2(mx + m2 sin2 02) 0X = 12t x - (lx cos02 + 12)r2 + m2lxl2(/, cos02 +l2)0X sin02

-  m2gl2(/, cos02 +l2) sin(0, + 02) + m2lxl2 (2 0x + 02) sin02 02 
+ mxglxl2 s in ^  +m2gl2[lx sin#, +l2 sin(#, + #2)]

(3.27)
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From equation (3.18),

q _  ^ 2  ~ ^ 2 ^ 2  ^ 2  ^ 2 ^ 2  sin#2 + sin(#, + #2)
1 m2l2(l\COS&2 +l2)

putting this into equation (3.17) gives

l?l2m2(mi + m2sin2 02)O2 = -m 2/2(/] cos#2 + /2)r, + ( mj f  + m 2l? + m 2l2 +2m2lxl2 cos#2)

[t2 -  m2l j 2 #,2 sin02 + m2gl2 sin(#, + 02)] -  m2/,/2 (/, cos02 +l 2)

(2#, + 02) sin 02 02-  mlm2g l j 2(li cos02 + /2) sin 6>,

-  m2gl2 (/, cos 02 + 12)[/, sin 0t +12 sin(#, + 02)]
(3.29)

Finally, dividing by the lead coefficient o f the equations (3.27) and (3.29) gives,

1 i# ,  —  ; {^2̂1 — (A  C O S0J +  ^ 2 ) ^ 2  + 1̂2 A A  (A  C O S02 "* "^ 2 )^ 1  s i n  02
/, l2 (m l + m2 sin 02)

- m 2gl2(ll cos#2 + /2)sin(#, + 02) + m2l{l2 (29{ + 02)s'm02 02 + m {g l ll2 sin#,

+ m 2gl2[ll sin#, + /2 sin(#, + #2)]}
(3.30)

#2 = —   1 • 2 „ . , 2 , 2  cos6>2 + li)Ti + K A 2 +m2lf +m 2l22 +
w2 (m, + m2 sin 02)/, l2

2m2lxl2 cos#2)[r2 - m2l j 2 #, sin#2 + w2g72 sin(^, + #2)] - m2/,/2 (/, cos#2 +l2)

(2 #, + #2) sin #2 02 -  mlm2glll2(ll cos02 + /2)sin#, - m 2gl2(lt cos02 +l2)
[/ sin #, + 12 sin(#, + #2)]}

(3.31)

Now, put these equations of two cases into standard state form. We make the 

following substitutions:

z, = #, z2 = 0i = zi z3 = # 2 z 4 = # 2 = Z 3  (3.32)

In the case of p  =

system as

, write the final state space equation for the two pitch joint
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d_ __d_ 
dt ~ dt

lxl2(mx + m2 sin2 z3)

+ m2lxl2(2z 2 + z4)(sinz3)z4}

{/2r, -  (/, cosz3 + 12 ) t2 + m2lxl2 (/, cos z3 + 12 )z2 sin z3

1
/j l2m2(mx + m2 sin z3)

{-m2l2(lx cosz3 +12) t x +(mxlf +m2lx +m2l2

+ 2m2lxl2 cosz3)(r2 - m 2lxl2z\  sin z3) - w 2/,/2(/, cosz3 + / 2) 
(2z2 + z4)(sinz3)z4}

(3.33)

In the case o f  p  ■ , write the final state space equation for the two pitch joint

system as
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Z 2

d_ _ d _  

d t  ~ d t

1

/, l 2 (mx + m2 sin z3)
{/2r, -  (/, cos z 3 + 12 )t 2 + m 2l tl 2 (/, cos z3 + 12 ) z \  sin z 3

— m 2g l 2(/, c o sz 3 + /2)sin(z, + z 2) +  m 2l ]l2 ( l z 2 + z4)(s inz3)z4 

+ m xg l j 2 sinz, + w 2g /2[/, sinz, + / 2 sin(z, + z 3)]}

1
- { - m 2l 2( l i c o sz 3 + /2)r, +(ffj,/,2 + w 2/,2 + » j2/

l \ l l m2(m l +  m2 sin2 z3)

+ 2m 2lxl2 cos z3 )[r2 -  «j2/ , /2z 2 sin z3 + w 2g /2 sin(z, + z3)]

co s z 3 + / 2)(2 z 2 + z 4)(sinz3)z4 -  m lm 2g l j 2( l l c o sz 3 + / 2)sinz,  

- m l g l 2{lx c o sz 3 + / 2)[/i sinz, + / 2 sin(z, + z 3)]}

(3.34)

These two expressions are the desired forms given in equation (3.19) in the cases 

respectively.

Again, we will simulate the two cases of this system in Matlab using its ODE routines 

such as ode23, and discuss the dynamic characteristics o f this system in following 

sections

'O' 'O'
Of/7 = 0 and p  - 1

1 0

3.3 Characteristics in Free Motion

In this section, we will discuss the characteristics in free motion of the vertical two- 

pitch-joint link system. Two cases will be studied. One is in case o f p  = [0 0 l} ; 

and the other is in case o fp  = [0 1 0}. In case of p  = [0 0 l ) , the free motion can
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be classified into two types according the different initial conditions. The one is 

rotation and the other is oscillation.

In free motion, the actuated torques equal zero and the kinetic energy is a constant. 

Let the actuated torques her,, / = 1,2. Sor, = r 2=0; Let the kinetic energy be E k . Here

E k = C , C is a constant.

3.3.1 Characteristics in Free Motion in Case of p  = [0 0 l]'

In this case, the free motion can be classified into two types according to the different 

initial conditions. One is rotation and the other is oscillation. Furthermore, we know 

that the angular velocity of this system (or the kinetic energy of this system) 

determines which motion will appear.

Simulate the two-pitch-joint link system using different physical parameters which are 

listed in Table 3.1 under certain initial conditions. We simulate this system according 

to state space equation (3.33) within Matlab using its ode23 routine under different 

initial conditions.

Table 3.1 Physical parameters of a two-pitch-joint link system

K 0.1 1 10

k2 0.1 1 10

Note: kx = — , k2 = — 
m, L

From the simulation results, we can see that second link of this system keeps rotating 

or oscillating according to different physical parameters and different initial 

conditions. It is hard to summarize rule of classification o f motion mode because we 

have no analytical solutions to this system. This is the disadvantage of numerical
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solution which is used in this paper. However it is the only choice when analytical 

solution is not practical and it is a strong tool to solve a specific problem. We can still 

find the following characteristics about the free motion:

1) If  the second link of the system keeps oscillating, when k2 (the ration of 

lx and/2) is fixed, the amplitude o f the oscillating increases while k] (the ratio 

o f mx and m2) increases.

2) If  the second link of the system keeps rotating, when k2 (the ration o f /, and/2) 

is fixed, the rotating displacement increases while k x (the ratio of mxandm2) 

increases.

We can only try finite scenario which can not include all cases of realistic problems. 

Next, we will give two examples which represent two types o f free motion. Example 

1 represents oscillation type and example 2 represents rotation type.

Example 1, assume mx = m 2 = l&gand/, = l2 = 1 m.  Simulate this two-pitch-joint link

system under the following initial condition: z 0 = . We will simulate this system

according to the state space equation (3.33) within Matlab using its ode23 routine. 

Figure 3.2 and Figure 3.3 represent the relationships of 1st and 2nd joint angular 

displacement versus time respectively.
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Two-pitch-joint system
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Figure 3.2 1st joint angular displacement versus time at the initial condition: 
r l = 0 ,r2 = 0,z0 = [0 1 0 1]'
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Figure 3.3 2nd joint angular displacement versus time at the initial condition: 
t x = 0 ,r2 = 0,zo = [0 1 0 1]'
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From Figure 3.2 and Figure 3.3, we can see that the first link rotates continuously 

while the second link oscillates between two specified points. In free motion, there is 

no actuated torques acting on the system. So the kinetic energy of this system is a 

constant. It can be verified from Figure 3.2 through Figure 3.5. Figure 3.4 and Figure 

3.5 are the plots that represent relationship of first and second joint angular velocities 

versus time respectively.

Two-pitch-joint system
1.9

1.8

1.7

1.6

1.5

1.4
<DT3

1.3

1.2

1.1

1
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Figure 3.4 1st joint angular velocity versus time at the initial condition: 
r, = 0 ,r2 = 0 ,z0 = [0 1 0 1]'
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Two-pitch-joint system
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Figure 3.5 2nd joint angular velocity versus time at the initial condition: 
r, = 0 ,r2 = 0,zo = [0 1 0 1]'

Because there is a relative motion between 1st link and 2nd link, there exists relative 

angular acceleration between 1st link and 2nd link. Figure 3.6 and Figure 3.7 are the 

plots that represent relationship of first and second joint angular accelerations versus 

time respectively. The first joint angular acceleration is absolute angular acceleration 

while the second joint angular acceleration is relative angular acceleration to the first 

link.
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Two-pitch-joint system
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Figure 3.6 1st joint angular acceleration versus time at the initial condition: 
Tj = 0 ,r2 = 0 ,z0 -  [0 1 0 1]'
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Figure 3.7 2nd joint angular acceleration versus time at the initial condition: 
xx = 0 ,r2 = 0,z0 = [0 1 0 1]'
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In addition, From Figure 3.3, Figure 3.5 and Figure 3.7, the numerical solution curves 

look like sine waves. Let’s compare the numerical solution curves with the 

corresponding sine waves. Figure 3.8 through Figure 3.10 are the comparison results. 

The comparisons are almost the same. Meanwhile, we calculate the relative error of 

each solution curve which is about ± 3%,±4%,±5% respectively. It suggests that the 

solution curves can be treated as sine waves under certain initial condition. Further, 

we need prove it through analytical method. It exceeds the focus of this thesis.

Two-pitch-joint system
0.4

Ideal Sine Wave 
Numerical Solution Curve

0.3

0.2

c
TJ
S

- 0.1

- 0.2

-0.3

-0.4
0 1 32 4 5 6 7 8 9 10

Time (sec)

Figure 3.8 Comparison between numerical solution curve and the corresponding sine 
wave of 2nd joint angular displacement
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Two-pitch-joint system
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Figure 3.9 Comparison between numerical solution curve and the corresponding sine
wave of 2nd joint angular velocity
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Figure 3.10 Comparison between numerical solution curve and the corresponding sine
wave of 2nd joint angular acceleration
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Example 2, assume mx =10kg,m2 =1 kg and/, = 0.lm ,/2 =1 m . Simulate this two-

pitch-joint link system under the following initial condition: z 0 =

0
1

0
-1

. We will

simulate this system according to the state space equation (3.33) within Matlab using 

its ode23 routine. Figure 3.11 and Figure 3.12 are the plots that represent the 

relationship of first and second joint angular displacement versus time respectively.

Two-pitch-joint system
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Figure 3.11 1st joint angular displacement versus time at the initial condition: 
r, = 0 ,r 2 = 0 ,z0 =[0 1 0 -1]'
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Two-pitch-joint system

-o

® -10

-12

-14

-16

-18
0 2 4 6 8 10 12 14 16 18 20

Time (sec)

Figure 3.12 2nd joint angular displacement versus time at the initial condition: 
r, = 0 ,r2 = 0 ,z0 = [0 1 0 -1]'

From Figure 3.11 and Figure 3.12, it can be seen that the first link rotates 

counterclockwise continuously while the second link rotates clockwise continuously. 

Figure 3.13 and Figure 3.14 are the plots that represent the relationships of 1st and 2nd 

joint angular velocities versus time respectively. Again since there is a relative motion 

between 1st link and 2nd link, there exists relative angular acceleration between 1st link 

and 2nd link. Figure 3.15 and Figure 3.16 are the plots that represent relationship of 

first and second joint angular accelerations versus time respectively. The first joint 

angular acceleration is absolute angular acceleration while the second joint angular 

acceleration is relative angular acceleration to the first link.
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Two-pitch-joint system
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Figure 3.13 1st joint angular velocity versus time at the initial condition: 
r, = 0 ,r2 = 0 ,z0 = [0 1 0 -1]'
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Figure 3.14 2nd joint angular velocity versus time at the initial condition: 
r-! = 0 ,r2 = 0 ,z0 = [0 1 0 -1]'
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Two-pitch-joint system
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Figure 3.15 1st joint angular acceleration versus time at the initial condition: 
r, = 0 ,r2 = 0 ,z0 = [0 1 0 -1]'
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Figure 3.16 2nd joint angular acceleration versus time at the initial condition: 
r ,  =  0 , r 2 = 0 , z 0 = [0 1 0 - 1 ] '
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3.3.2 Characteristics in Free Motion in Case of p  = [0 1 O]1

In this section, simulate the two-pitch-joint link system using different physical 

parameters which are listed in Table 3.1 under different initial conditions. We 

simulate this system according to state space equation (3.34) within Matlab using its 

ode23 routine. From the results of simulation, we can not find the rule of motion of 

the two links because of their nonlinear characteristics due to the gravity.

Following is an example of the simulation. Assume point masses mx = m2 -  1 kg,  link 

lengths /j = l2 = Im . Simulate this two-pitch-joint link system under the following 

initial condition: z 0 = [0 0.5 0 0.5} according to state space equation (3.34). 

Figure 3.17 and Figure 3.18 represent the relationships of 1st and 2nd joint angular 

displacement versus time respectively.
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Figure 3.17 1st joint angular displacement versus time at the initial condition: 
Ty = 0, t2 = 0 ,z0 = [0 0.5 0 0.5]'
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Two-pitch-joint system
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Figure 3.18 2nd joint angular displacement versus time at the initial condition: 
r, = 0 ,r2 = 0 ,zo = [0 0.5 0 0.5]'

Figure 3.19 and Figure 3.20 are the plots that represent the relationship o f 1st and 2nd 

joint angular velocities versus time, respectively.
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Two-pitch-joint system
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Figure 3.19 1st joint angular velocity versus time at the initial condition: 
r, = 0 ,r2 = 0 ,z0 = [0 0.5 0 0.5]'

Two-pitch-joint system

8t/3

-o

-10

-15

-20

-25

Time (sec)

Figure 3.20 2nd joint angular velocity versus time at the initial condition: 
Tj = 0 ,r2 = 0 ,zo = [0 0.5 0 0.5]'
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Figure 3.21 and Figure 3.22 are the plots that represent the relationship of 1st and 2nd 

joint angular accelerations versus time respectively.
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Figure 3.21 1st joint angular acceleration versus time at the initial condition: 
r, = 0 ,r2 = 0 ,zo = [0 0.5 0 0.5]'
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Figure 3.22 2nd joint angular acceleration versus time at the initial condition: 
r, = 0 ,r2 = 0 ,z0 = [0 0.5 0 0.5]'

3.4 Dynamics o f Forced Motion

In this section, we will discuss the characteristics in forced motion o f the vertical two-

pitch-joint link system. Two cases will be studied. One is in case o f p  = ; and the

other is in case of p  =
i  i

. Assume ml = m2 = \kg and lx = l2 =\m . Let X = —

r 15r 2 are the actuated torques acting on 1st and 2nd links respectively.
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3.4.1 Dynamics o f Forced Motion in case o f p  = [0 0 l}

Assume ml = m 2 =lA gand/, - l 2 =1 m .  Changed =0.1,1,5,10 respectively, simulate

this system under the initial condition: z 0 . We find:

1) r ,is  fixed, 1st link keeps rotating. When 2, increases, the angular displacement 

o f 1st link keeps unchanged; 2nd link keeps oscillating, when A increase, the amplitude 

o f the oscillating will decrease.

2) t2 is fixed, 1st link keeps rotating. When A increases, the angular displacement 

o f 1st link increases; 2nd link keeps oscillating, when A increases, the amplitude of the 

oscillating will decrease.

Keep the physical parameters unchanged, simulate this system under different initial

condition, for example z 0 = . We found that the motion rule o f the two links is

different from that of the two links under above initial condition. So the motion rule 

o f the two links is dependent on the initial conditions when the physical parameters 

are given. The example of plots will not be given here for the purpose of brevity.

3.4.2 Dynamics o f Forced Motion in case o f p  = [0 1 0}

With point masses mx = m2 =1 kg ,  link lengths/, = l2 =\m . Changed =0.1,1,5,10

respectively, simulate this system under the initial condition: z 0 = 0 = . We can
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not find the rule of motion of the two links because of their nonlinear characteristics. 

Figure 3.23 through Figure 3.28 are the example of plots that represent the 

relationships of joint angular displacement, joint angular velocities and joint angular 

accelerations versus time respectively whenr, = r 2 = 1 N m .
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Figure 3.23 1st joint angular displacement versus time at the initial condition:
r, = l , r 2 =1 , z 0 = 0
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Figure 3.24 2nd joint angular displacement versus time at the initial condition:
xx -  l , r 2 =1 , z 0 =0
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Figure 3.25 1st joint angular velocity versus time at the initial condition:
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Figure 3.26 2nd joint angular velocity versus time at the initial condition:
r ,  = 1  , r 2 = 1  , z 0 = 0
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Figure 3.27 1st joint angular acceleration versus time at the initial condition:
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Figure 3.28 2nd joint angular acceleration versus time at the initial condition:
Tl =1 , T2 =1 ,Z0 = 0

The plots can be explained by the method of motion analysis and synthesis, but it 

exceeds the focus of this thesis so it will not be discussed in detail here. Up to now, 

we have known the dynamics of the forced motion of the two-pitch-joint link system 

through the results o f the simulation. Next, we will give an example which tries to use 

an appropriate control sequence so as to move the system along the specified path 

according to its dynamic characteristics. To simplify this problem without losing its 

generality, we consider the two-pitch-joint link system as a discrete time system. The 

control input is taken as discrete values and the non-dimensional sampling time is 

chosen appropriately. The control action is started from the time t0 applying a

constant torque, and switched by the other value at the t i m e / , , . Also let the

interval /, < t < t M be control interval/, and r 2/is a constant torque at the interval.
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Figure 3.29 shows the plots of the relationship between the 2nd joint angular 

displacement and its angular velocity for the actuated torque at 2nd joint r 2, =6, 5 in the 

case of Tj = 3Nm , ml = m2 = 1 kg and /, = l2 = 1 m (meter). The plots represent the

forced motion, started from the point O with the initial condition: z 0 =

0.5
0

0.5

0

, actuated

by a constant torque, and then switched by another constant torque at the point A, B 

respectively.
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Figure 3.29 The variations of the trajectory parameter d2 in the case of 
ml = m2 = 1 kg and /, = l2 = 1 m (meter), where the solid line is v2i =6, and the dotted

line is z2j= 5.

Here, we show an example of the control action using Figure 3.29. The motion 

control considered in this example is to move the second link of this system from 

initial point O to the final point Z, and make the angular velocity o f the second joint
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equal to zero at the final point Z. At the beginning, the second link is moved from the 

point O to the point A or B applying r 20 =6. At the point A or B, the torque is changed 

into r 21= 5, then the second link moves to the point Z. At the point Z, the angular 

velocity o f the second joint is equal to zero, and then the second link stops applying 

r 21=0 at this point.

In this example, a simple control action is considered. However, we can discuss the 

general case switched more times by arbitrary torques. As long as the actuated torque 

and switched point are given, we can take the motion trajectory schematically by the 

manner in the above example.

As for the case of the control motion of first link, we can also easily obtain an 

appropriate control sequence using the same method discussed above. It can be a 

further study for the motion control of the two link system.

3.5 Conclusion

In this chapter, we modeled the two-pitch-joint link system and derived the motion 

equations o f this system. The motion equations are different when different 

orientations are chosen. Two orientations are chosen for discussion: one 

is p  = [o 0 l j ,  the other is p  = [0 1 O). The characteristics of the free motion 

mode o f this system are discussed. In case of p  = [0 0 l} , the free motion can be 

classified into two types according to the different initial conditions. The one is 

rotation and the other is oscillation. Meanwhile, we know that the angular velocity of 

this system (or the kinetic energy of this system) determines which motion will appear. 

Furthermore, from the comparison results, it suggests that solution curves of 2nd joint
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angular displacement, angular velocity and angular acceleration can be simplified as 

corresponding sine waves under certain initial condition.

In addition, we discussed the dynamics of the forced motion of this system for both of 

the two orientations. Also, we give an example to obtain an appropriate control 

sequence of the system under the orientation of p  = [0 1 0}. From the example, we 

know that as long as the actuated torque and switched point are given, we can take the 

motion trajectory schematically by the manner in the example.
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Chapter 4 

Conclusions

In this thesis, we have modeled two non-linear dynamical systems mathematically, a 

one-pitch-joint link system and a two-pitch-joint link system, and derived the motion 

equations o f both systems, then simulated both o f the systems numerically using ODE 

routine such as ode23 with Matlab.

In chapter 2, we modeled a one-pitch-joint link system and drove the motion 

equations o f this system. The equations can be classified into linear and non-linear 

according to the orientation which is chosen. Characteristics of the free motion and 

dynamics of the forced motion of this system are discussed. The free motion can be 

classified into two types. One is rotation and the other is oscillation. Furthermore, it 

can be shown that the initial conditions determine which motion will appear. Some 

dynamic characteristics are also shown. The link o f this system will keep rotating or 

oscillating according to the initial conditions. In addition, an example of appropriate 

control sequence o f the system is obtained based on the dynamics of forced motion 

analysis.

In chapter 3, we modeled the two-pitch-joint link system and derived the motion 

equations of this system. The motion equations are different when different 

orientations are chosen. Two orientations are chosen for discussion: one 

is p  = [0 0 l} , the other is p  = [0 1 O]'. The characteristics of the free motion
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mode of this system are discussed. In case of p  = [0 0 l] ', the free motion can be 

classified into two types according to the different initial conditions. The one is 

rotation and the other is oscillation. Furthermore, we know that the angular velocity of 

this system (or the kinetic energy of this system) determines which motion will appear. 

In addition, we discussed the dynamics of the forced motion of this system for both of 

the two orientations. The same as chapter 2, we also give an example to obtain an 

appropriate control sequence of the system under the orientation of p  = [0 1 0}.

In chapter 2 and chapter 3, the control consequences of the forced motion of both 

systems are presented based on the numerical integration approach. As long as the 

actuated torque and switched point are given, we can take the motion trajectory 

schematically by the manner discussed in the example of this thesis.

As noted in Chapter 3, the motion equation of a two-pitch-joint link system is still 

quite complicated, but some progress has been made. However, much work remains 

to be done to understand the qualitative dynamics of this system.
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